ZIP4H (TEX11) Deficiency in the Mouse Impairs Meiotic Double Strand Break Repair and the Regulation of Crossing Over

نویسندگان

  • Carrie A. Adelman
  • John H. J. Petrini
چکیده

We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs). This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11), a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB)) mice, Zip4h(-/Y) mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y) mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-pathway analysis of meiotic crossing over and gene conversion in Saccharomyces cerevisiae.

Several apparently paradoxical observations regarding meiotic crossing over and gene conversion are readily resolved in a framework that recognizes the existence of two recombination pathways that differ in mismatch repair, structures of intermediates, crossover interference, and the generation of noncrossovers. One manifestation of these differences is that simultaneous gene conversion on both...

متن کامل

P-230: Analysis of TEX15 Expression in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men Referred to Royan Institute

Background: TEX15 is a novel protein that is required for chromosomal synapsis and meiotic recombination. Human TEX15 is located on chromosome 8(8p12 region) and expressed in testis and ovary, as is its mouse ortholog. Loss of TEX15 function in mice causes early meiotic arrest in males but not in females. Specifically, TEX15 deficient spermatocytes exhibit a failure in chromosomal synapsis. In ...

متن کامل

BRC-1 acts in the inter-sister pathway of meiotic double-strand break repair.

The breast and ovarian cancer susceptibility protein BRCA1 is evolutionarily conserved and functions in DNA double-strand break (DSB) repair through homologous recombination, but its role in meiosis is poorly understood. By using genetic analysis, we investigated the role of the Caenorhabditis elegans BRCA1 orthologue (brc-1) during meiotic prophase. The null mutant in the brc-1 gene is viable,...

متن کامل

A-MYB (MYBL1) transcription factor is a master regulator of male meiosis.

The transcriptional regulation of mammalian meiosis is poorly characterized, owing to few genetic and ex vivo models. From a genetic screen, we identify the transcription factor MYBL1 as a male-specific master regulator of several crucial meiotic processes. Spermatocytes bearing a novel separation-of-function allele (Mybl1(repro9)) had subtle defects in autosome synapsis in pachynema, a high in...

متن کامل

Meiotic versus mitotic recombination : Two different routes for double - strand break repair

Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated dur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Genetics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008